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Field due to a dipole in a polarisable molecular lattice 
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Department of Chemistry, UMIST, Manchester M60 lQD, UK 

Received 9 February 1983 

Abstract. The effective electric field due to a permanent dipole in an arbitrary Bravais 
lattice of polarisable non-polar molecules is expressed exactly, taking account of the 
different polarisability of the polar guest molecule. The asymptotic behaviour of the field 
at large distances from the dipole is evaluated. An interpretation is offered for the rescaled 
dipole moment required to give agreement with continuum dielectric theory. 

1. Introduction 

Recent papers have derived analytical expressions for the electric field produced in 
a simple cubic lattice of isotropically polarisable non-polar particles by a permanent 
dipole at one site, with particular reference to the long-range behaviour and the 
corresponding continuum approximation (Smith 1980, Wielopolski 1981, Smith and 
Wielpolski 1982). Information on the range of validity of the contimuum approximation 
is especially useful for calculations on fluids (Pollock and Alder 1977, 1978, Pollock 
et a1 1980, Dunmur and Munn 1983). Knowledge of the field produced by the dipole 
moment of a guest molecule in a lattice is also required to interpret the electronic 
Stark effect in molecular crystals (Dunmur and Munn 1975, Fox 1976, Munn 1983). 

In this paper we point out that work on the electronic Stark effect has provided 
exact solutions for the electric field produced in a lattice of arbitrary symmetry 
composed of anisotropically polarisable molecules with permanent dipole moments 
when some molecules are replaced by guest molecules with different dipole moments 
and polarisabilities (Dunmur and Munn 1975, Fox 1976, Munn 1983). Related work 
on the polarisation energy of a localised charge in a perfect or substitutionally imperfect 
molecular lattice has treated the long-range contribution to the exact microscopic 
result, showing how this contribution goes over into the continuum result under cubic 
symmetry (Bounds and Munn 1979, Eisenstein et a1 1983). Here we combine results 
from these pieces of work, deriving a general long-range expression for the field due 
to a polar molecule in a non-polar lattice, and showing how this work relates to that 
of Smith (1980), Wielopolski (1981) and Smith and Wielopolski (1982). A number 
of the expressions obtained here were also foreshadowed by work of Mahan (1967). 

2. Microscopic theory 

For simplicity we treat a crystal with one non-polar molecule per primitive unit cell 
of volume U and a single polar guest molecule at site 1. The extension to any number 
of molecules per unit cell and any number of guests is readily deduced from previous 
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work (Eisenstein eta1 1983). The effective or local field is efficiently calculated through 
the inverse dielectric function (Munn 1980), which for the perfect crystal is 

E- '=( I -T .B) - '  (1) 

corresponding to the quantity A' of Wielopolski (1981). For N unit cells, the quantities 
in (1) are dimensionless 3N x 3N matrices composed of 3 x 3 submatrices which in a 
site representation are 

Bij = ( B / E ~ v ) S ~ ~  PSij (4) 

where rii is the vector between site i and site i, TIi = 0, and a is the molecular 
polarisability tensor. When molecule 1 has its polarisability changed to a +a,  the 
dielectric function for the imperfect crystal becomes (Fox 1976, Eisenstein et a1 1983) 

8-l = Q .  E-' ( 5 )  

Q = (I -E-' . T . Br)-' (6) 

B:j = (a/cov)Si,-6il 3 bSi,-6ir. (7) 
The local field at site i in the imperfect crystal due to a guest dipole moment pl 

corresponding to the quantity A of Wielopolski (1981); here (Fox 1976) 

at site 1 is 

Fi = (8-l - T)il * p r / ~ o u  

= (Q * z)il* C ( I / E O V  

(8) 

(9) 
where Z = E-' - T. By expanding the inverse in (6), using (7) and resumming, or more 
elegantly by using a projection matrix technique (Eisenstein et af 1983), we find 
eventually (Fox 1976) 

0 1 1  = (1 -211 * b)-' (10) 

Qil= Zil * b . Q11 (i # 1) (11) 

( i f  1). (12) Q.. = 16.. 

Substitution in (9) yields the reaction field as 

Fi=Qii * Z i i  ' P i I E o U  (13) 
while the field at site i # 1 is 

Here the combination ml =/L + a  F1 is an effective dipole source which also 
occurs in analysing the Stark effect (Dunmur and Munn 1975, Fox 1976, Munn 1983). 
By manipulating (10) one can deduce that 

(17) I + b * Q 1 1 -  211 = 2;: * Q 1 1 -  21 1 = QT, 



Field due to dipole in polarisable molecuhr lattice 2855 

where the superscript T denotes the transpose, which leads via the compact result 
m = Qfl * p to (Fox 1976) 

Fr = 2, 1 * Qfi * p I / E O V  (18) 

Thus it is the effective dipole moment m l  which gives the local fields in the crystal 
when the guest polarisability differs from that of the host. It corresponds to the quantity 
Y ( U ,  a) of Smith and Wielopolski (1982). The net dipole moment of the guest is 

(19) 

( i  # 1). 

pl  = p1 +(a +a)  .Fl 
which with (13), (17) and the result (Munn 1983) 

B - E - ' .  T =  (20) 

p 1 = (E- ' )  f, * m 1 .  

leads to 

(21) 

Equations (18) and (21) correspond to (4.42) and (4.46) with ( 5 . 5 )  of Smith and 
Wielopolski (1982). 

The response matrix Z is evaluated by Fourier transformation, which yields 
(Eisenstein et a1 1983) 

where y is the wavevector; the quantity in square brackets is the Fourier transformed 
inverse dielectric function for the perfect crystal, c - ' ( y )  (Munn (1980); note a 
transposition error in  (3.18)); and 

t (y )  = 1 exp(2.niy * r, ,)  TI, (23) 
I 

is a modulated lattice dipole sum, which can be calculated by standard methods 
(Cummins et a1 1976, Bounds and Munn 1979). The expressions ( lo) ,  (13), (18), 
(22) and (23) constitute the exact solution for the electric fields. In practice Z,, would 
be evaluated by summation over a suitably dense mesh of points y in the first Brillouin 
zone or by an equivalent integration; as shown by Smith and Wielopolski (1982), this 
process is shape independent in the present case. 

3. Long-range behaviour 

We now consider the asymptotic long-range behaviour of the electric field at site i in 
the limit ril + CD. Assuming that ~ - ' ( y )  * t ( y )  in (22) varies smoothly withy, we obtain 
the dominant contributions to Z i l  from the region y -+ 0. In this region 

t ( Y )  = L - Y Y / Y 2  (24) 
where L is the Lorentz-factor tensor (Cummins et a1 1976), which is here independent 
of y .  The inverse required in ( 2 2 )  is then given by (Bounds and Munn 1979, Munn 
1980, Smith 1980) 
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where x is the electric susceptibility and E = 1 + x  is the macroscopic dielectric tensor. 
Together these results yield after manipulation 

E - ' ( Y )  t ( y ) = d  L - ( d  . y ) ( y  .dT) /y  L * y  (27) 

where the local field tensor d defined by 

(28) 

gives the local field produced by a macroscopic field E as F = d * E (Dunmur and 
Munn 1975). When (27) is substituted in (22) for i f j ,  the term independent of y 
gives zero contribution to the sum. 

We now transform to new wavevector variables q =c112 y and direct space 
variables pii = C ' l 2  rij. Then for rij + 03 we find 

1 d /3 - * x = (1 - L * p)- '  

The sum is now over the allowed wavevectors in the first Brillouin zone of the 
transformed lattice having basic translations Ai (i = 1,. . . , 3) related to those of the 
original lattice ai by A i  = € - ' I 2  ai .  The quantity in square brackets in (29) is minus 
dipole tensor Yij in the transformed lattice (Munn 19801, as follows from (24) since 
the Lorentz-factor tensor is independent of wavevector. Thus we may write 

Zi, G Fij * GT, (30) 
where G = d C 1 I 2 .  It is also found that 

F i j  = T i j ( p i j ) / ( E  1 E 2~ 3 ) '  I2 (31) 

where the E ,  are the principal components of E and correct for the new unit-cell volume 
in the transformed lattice compared with that for the original lattice in (3). 

Further insight into (30) and (31) can be obtained by using the principal axis system 
of c with r i j  parallel to the 1 axis. Then e-1'2 rij = E 1 

(32) 

with analogous expressions for rr, parallel to the other principal axes. The factor 
c * Ti,  leads to the screehed field expected from continuum theory, but the additional 
factors also require interpretation. The first factor d takes account of the discrete 
structure at the field point i by converting the macroscopic field to the local field. 
The second factor dT can be regarded as similarly taking account of the discrete 
structure at the source point j .  The leading factor ( & : / & 1 & 2 & 3 ) 1 / 2  arises from (31), 
since Tij(pi j )  = p i 3  and pi, = E ;'/' rij. With this correction factor, the transformed lattice 
already mentioned has dielectric properties equivalent to those of the original lattice 
and takes account of the dielectric anisotropy. 

For a general direction of ri,, Tli  cannot be separated out as in (32) and the full 
transformation T i ,  + Fij is required. However, from (30) it is seen that the local field 
tensors occur as before. The inverse dielectric tensor a-' occurs as factors to 
the left and right of Yij, thus treating the field and source points symmetrically. 

Under cubic symmetry, the tensors /3, x and a become isotropic, with magnitudes 
6,  x and E respectively. Then G also becomes isotropic, with magnitude x / @ E ' / ~ ,  

and Fij reduces to Ti j (rz i )  or simply Ti,, so that 

-112 rii and we find 
3 Zi, = ( & 1 / & 1 ~ 2 & 3 ) ' / ~  d c - l  T I ,  * dT 

-1  

Z i l  " T i l / ( & p 2 / x 2 )  = T i 1  d 2 / E .  (33) 
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From (26)  we find results which correspond to the Clausius-Mossotti equation: 

p / x  = l - x  

E = ( 1 + 2 x ) / ( l - x )  

(34) 

(35) 

where x = p / 3  is equivalent to the quantity x of Smith and Wielopolski (1982). The 
field at site i as rl, + 00 can therefore be written as 

(36) 

in agreement with (4.45) of Smith and Wielopolski (1982); compare also Mahan 
(1967). Note that although the host polarisability is isotropic in this case, the polarisa- 
bility of a polar guest will normally be anisotropic. The effect of this anisotropy is 
incorporated in the effective dipole m I .  

For the reaction field F1 it is not appropriate to take y + O ,  since (22) shows that 
for i = j = 1 we must obtain Z l l  by a sum over all y. However, a knowledge of the 
approximate reaction field obtained for y = O  may be useful in interpreting other 
results, For instance, under cubic symmetry where L = $1, the y = 0 approximation 
Zyl follows from (22) and (27) as 

F, = T,l - m 1/(1 + 2x)(1 - X ) E ~ V  

Zy1 = $ d ( l - d / & ) = 2 d ( d - 1 ) / 3 &  (37) 

= 2 ~ / 3 ( 1 + 2 ~ ) ( 1  - x )  (38) 
where we have used TI, = 0 and (28). Corresponding y = 0 approximations follow, 
giving Q Y 1  from (10) and F? from (13). A number of papers have treated the field 
due to a non-polarisable dipole in a fluid (Pollock and Alder 1977, Pollock eta1 1980, 
1981, Keyes 1980). Then b = -p and we obtain 

FY = 2xp1/3( l+x)~ou,  (39) 

in agreement with (5.9) of Smith and Wielopolski (1982) with w = 0. The correspond- 
ing approximation for the effective dipole source is 

my =p~-aF(: 

= (1 +2x)(1 -x )p1 / (1  +XI. 

If the true source is written as m = Am ?, where A is a correction factor, the field (36) 
becomes 

(42) 

This is equivalent to the result obtained by Pollock er a1 (1980, 1981), and allows 
their effective dipole moment peff to be identified as h p l  in the present notation. 

F, =T, i  * piA/(l + X ) E O U .  

4. Discussion 

We have shown how previous work on molecular crystals provides exact expressions 
for the electric field due to a dipole in a non-polar molecular lattice. The extension 
to a polar lattice with more than one molecule per primitive unit cell is straightforward. 
Molecular size, shape and orientation can also be taken into account by a submolecule 
treatment (Luty 1976, Bounds and Munn 1981, Eisenstein et a1 1983). 
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We have also derived the asymptotic behaviour of the electric field at large distances 
from the dipole. Under cubic symmetry, appropriate results of Smith and Wielopolski 
(1982) are regained. As can be seen from (16) and (32), our results give a field 
screened by the dielectric tensor c as expected from continuum theory, but there are 
other changes. The proper source is not the bare dipole moment p but m = p + a  - F1, 
because the guest polarisability differs by a from the host polarisability in the non-zero 
reaction field F, (Smith and Wielopolski 1982). Two local field factors are required 
to take account of the discrete structure at both the field and source points. Writing 
dT as eovx  a , we can interpret a -' m as the equivalent field required to induce 
the dipole source m l  in a host molecule, e O x  - E' as the polarisation P which would 
result if the macroscopic field E' were applied to the pure host crystal, and vP as the 
corresponding dipole moment of the unit cell 1. Thus dT * m can be regarded as an 
equivalent dipole source in the pure host crystal treated as a continuum. The results 
also require a further factor to take account of the anisotropic dielectric properties 
of the crystal, which give more complicated results for the field at points not on the 
principal dielectric axes. 

Note that more that one expression may be regarded as embodying continuum 
theory. For instance, the local field F, as r r l  -* 03 is given by the alternative expressions 
(36) and (42). In (36) all allowance for the effect of the reaction field is included in 
the replacement of p l  by the effective source ml. As we have seen, this conversion 
depends on the polarisability difference a. In (42) the y = O  approximation for the 
reaction field in the particular case of a non-polarisable source is included explicitly, 
and the factor A allows for the error in this approximation. This difference of approach 
explains why (36) can be rewritten using (35) to obtain the usual screening factor 1 / ~ ,  
whereas rewriting (42) similarly gives a factor 1 / ( 2 ~  + 1) instead (cf Keyes 1980). 

Algebraic results like those here do not show at what distance the long-range 
continuum dominates. Such information can be extracted from numerical microscopic 
calculations. These include the polarisation energy due to a single charge in a fluid 
(Pollock and Alder 1978, Pollock et a1 1980) or in a molecular crystal (Bounds and 
Munn 1979, 1981) or that due to a pair of opposite charges in a molecular crystal 
(Bounds et a1 1981), or calculations of the change in polarisation energy of a single 
charge due to a vacancy in a crystal (Eisenstein eta1 1983). These calculations suggest 
that continuum models provide a good approximation at distances greater than one 
or two molecular diameters. The behaviour can be quite complex, but when the 
continuum r-" dependence on distance is obtained (where the integer n depends on 
the problem considered) it is governed by the same apparent dielectric constant along 
a given direction (Eisenstein el a1 1983). The present results for the anisotropic 
continuum indicate how this occurs if one evaluates 9,, in (31) by taking a coordinate 
system aligned with the direction concerned. Microscopic calculations of dielectric 
properties of lattices do therefore agree with continuum theory in suitable limits, but 
to show this may require rather complicated manipulations. 

-1  
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